Использование веб-фреймворка Go gin

Go

ginЭто самый популярный веб-фреймворк на golang с высокопроизводительной маршрутизацией.Основные функции, представленные на официальном сайте, включают быструю скорость, поддержку промежуточного программного обеспечения, обработку сбоев, проверку json, поддержку групп маршрутизации и т. д. Эти функции можно сравнить к структуре koa узла.

image

быстрый старт

Установить:

go get -u github.com/gin-gonic/gin

Маршрут, который возвращает json:

package main

import (

   "github.com/gin-gonic/gin"

   "net/http"

)



func main() {

   r := gin.Default()

   r.GET("/someJson", func(c *gin.Context) {

      data := map[string]interface{}{

         "lang": "go lang",

         "tag": "<br>",

      }

      c.JSON(http.StatusOK, data)

   })

   r.Run(":8000")

}

Среди них gin.Default по умолчанию открывает два промежуточных ПО: регистратор и восстановление.Как видно из исходного кода, это эквивалентно использованию Use для открытия двух промежуточных ПО после вызова функции New:

image

Переписано для использования нового метода:

package main

import (

   "github.com/gin-gonic/gin"

   "net/http"

)



func main() {

   r := gin.New()

   r.Use(gin.Logger(), gin.Recovery())

   r.GET("/someJson", func(c *gin.Context) {

      data := map[string]interface{}{

         "lang": "go lang",

         "tag": "<br>",

      }

      c.JSON(http.StatusOK, data)

   })

   r.Run(":8000")

}

Маршрутизация и группы маршрутизации

Gin поддерживает get, post, patch, delete, put, options, head, any, где any поддерживает 7 методов get, post, patch, delete, put, options, head и gin предоставляет заглавную форму этих методов http, вы можете видеть из исходного кода gin, что это методы структуры RouterGroup:

image

image

Все эти методы являются сокращенными методами Handle.Как видно из исходного кода, метод group.handle также используется, а входящий метод httpMethod проверяется строкой в ​​Handle:

image

Мы изменим вышеприведенный r.GET на метод Handle следующим образом:

package main

import (

   "github.com/gin-gonic/gin"

   "net/http"

)



func main() {

   r := gin.New()

   r.Use(gin.Logger(), gin.Recovery())

 r.Handle(http.MethodGet, "/someJson", func(c *gin.Context) {

      data := map[string]interface{}{

         "lang": "go lang",

         "tag": "<br>",

      }

      c.JSON(http.StatusOK, data)

   })

   r.Run(":8000")

}

В реальной разработке у нас часто бывают сценарии, в которых роутятся версии api и бизнес-модули, что можно реализовать в gin через группы роутинга, то есть метод Group:

package main

import (

   "github.com/gin-gonic/gin"

   "net/http"

)





func main() {

   r := gin.Default()

   v1 := r.Group("/api/v1")

   v1.GET("/getUser", func(c *gin.Context) {

      c.JSON(http.StatusOK, gin.H{

         "name": "golang",

         "id": "1",

      })

   })

   r.Run(":8000")

}

Из исходного кода видно, что метод Group возвращает новую RouterGroup и вычисляет соответствующий routePath как basePath.

image

При обработке маршрута метод handle будет вызывать метод calculateAbsolutePath для расчета конечного пути маршрута.

image

параметр маршрута

Маршрутизация Джина основана наhttprouter, как и koa, используйте метод :param в качестве параметра маршрутизации и получите соответствующее значение через метод Param контекста, например:

package main



import (

   "github.com/gin-gonic/gin"

   "net/http"

)



func main() {

   r := gin.Default()

   r.GET("/user/:id", func(c *gin.Context) {

      id := c.Param("id")

      c.JSON(http.StatusOK, gin.H{

         "user": id,

      })

   })

   r.Run(":8000")

}

Из исходного кода видно, что он получен через c.Params.ByName, а c.Params по сути является слайсом, в котором хранятся параметры

image

image

Параметры маршрутизации также поддерживают соответствие всем, начинающимся с *, например:

package main



import (

   "fmt"

   "github.com/gin-gonic/gin"

   "net/http"

)



func main() {

   r := gin.Default()

   r.GET("/article/*id", func(c *gin.Context) {

      id := c.Param("id")

      c.JSON(http.StatusOK, gin.H{

         "article": id,

      })

   })

   r.Run(":8000")

}

Этот код может соответствовать всем следующим маршрутам:

/aritcle/123

/article/123/info

/aritcle/123/author/info

image

Получить и опубликовать параметры

Наиболее распространенным в разработке является передача данных на сервер через параметры get (строка запроса) и post (тело http), а gin получает соответствующие параметры get через Query of Context:

package main



import (

   "github.com/gin-gonic/gin"

   "net/http"

)



func main()  {

   r := gin.Default()

   r.GET("/user", func(c *gin.Context) {

      id := c.Query("id")

      c.JSON(http.StatusOK, gin.H{

         "id": id,

      })

   })

   r.Run(":8000")

}

В исходном коде мы видим, что вызывается метод GetQuery контекста:

image

Запрос хранится внутри gin через карту, которая определяется как map[string][]string, которая по существу получается через метод контекста c.Request.URL.Query():

image

image

image

Внутри gin анализируется методом parseQuery, из возвращаемого значения видно, что это карта со строкой в ​​качестве ключа и строковым массивом в качестве значения.

Если вы хотите установить значение по умолчанию для запроса, когда оно не существует, вы можете использовать метод DefaultQuery, который также использует метод GetQuery внутри этого метода и использует значение по умолчанию, когда оно не существует.

package main



import (

   "github.com/gin-gonic/gin"

   "net/http"

)



func main()  {

   r := gin.Default()

   r.GET("/user", func(c *gin.Context) {

      id := c.DefaultQuery("id", "456")

      c.JSON(http.StatusOK, gin.H{

         "id": id,

      })

   })

   r.Run(":8000")

}

image

При отправке данных на сервер часто используется метод post, который хранится в теле http в виде form-data, в gin соответствующее значение можно получить через метод PostForm:

package main

import (

   "github.com/gin-gonic/gin"

   "net/http"

)



func main() {

   r := gin.Default()

   r.POST("/user", func(c *gin.Context) {

      id := c.PostForm("id")

      c.JSON(http.StatusOK, gin.H{

         "code": 200,

         "id": id,

      })

   })

   r.Run(":8000")

}

Как и в случае с запросом, соответствующее значение по умолчанию можно установить с помощью DefaultPostForm, который получается внутри с помощью метода GetPostForm:

id := c.DefaultPostForm("id", "456")

image

image

image

image

image

куки и http заголовки

В процессе разработки часто бывает необходимо получить и установить файлы cookie. Вы можете получить соответствующее значение файла cookie через c.Cookie и использовать c.SetCookie для установки файла cookie:

package main

import (

   "github.com/gin-gonic/gin"

   "net/http"

)



func main()  {

   r := gin.Default()

   r.GET("/user", func(c *gin.Context) {

      session, _ := c.Cookie("session")

      c.SetCookie("site_cookie", "cookie1", 3600, "/", "localhost", false, true)

      c.JSON(http.StatusOK, gin.H{

         "code": 200,

         "session": session,

      })

   })

   r.Run(":8000")

}

Получение файла cookie также осуществляется внутренним образом через c.Request.Cookie, который считывает и анализирует поле cookie заголовка http:

image

image

image

image

Заголовки HTTP можно получить в виде c.GetHeader(key):

package main

import (

   "github.com/gin-gonic/gin"

   "net/http"

)



func main() {

   r := gin.Default()

   r.GET("/user", func(c *gin.Context) {

      lang := c.GetHeader("lang")

      c.JSON(http.StatusOK, gin.H{

         "code": 200,

         "lang": lang,

      })

   })

   r.Run(":8000")

}

По сути получается через метод запроса header.get, то есть c.Request.Header.Get, исходный код такой:

image

image

Установите заголовок ответа HTTP с помощью метода Header:

c.Header("user", "golang")

На самом деле он устанавливается структурой заголовка http-пакета:

image

image

image

image

перенаправить

Существует метод перенаправления в контексте перенаправления фреймворка gin, который помогает нам перенаправить, или вы можете напрямую изменить информацию об URL-адресе контекстного запроса, а затем продолжить обработку контекста:

package main

import (

   "github.com/gin-gonic/gin"

   "net/http"

)



func main() {

   r := gin.Default()

   r.GET("/info", func(c *gin.Context) {

      c.Redirect(http.StatusMovedPermanently, "/user")

   })

   r.GET("/article", func(c *gin.Context) {

      c.Request.URL.Path = "/user"

      r.HandleContext(c)

   })

   r.GET("/user", func(c *gin.Context) {

      c.JSON(http.StatusOK, gin.H{

         "code": 200,

         "data": "user",

      })

   })

   r.Run(":8000")

}

Redirect — это, по сути, метод Redirect пакета http, который вызывается:

image

Статические ресурсы и механизм шаблонов

Настройка статических ресурсов и механизма шаблонов является самой базовой возможностью веб-сервера. gin устанавливается с помощью трех методов маршрутизации Static, StaticFS и StaticFile:

package main

import (

   "github.com/gin-gonic/gin"

   "net/http"

)



func main() {

   r := gin.Default()

   r.Static("/", "./public")

   r.StaticFile("/", "./public")

   r.StaticFS("/", http.Dir("./public"))

   r.Run(":8000")

}

Static по существу реализуется внутри с помощью метода StaticFS:

image

golang имеет стандартную библиотеку шаблонизатораhttp/template, gin также использует эту стандартную библиотеку по умолчанию. Эта библиотека похожа на нашу широко используемую систему шаблонов. Она использует выражения усов в качестве переменных. В gin метод LoadHTMLGlob используется для загрузки шаблона, а c.HTML используется для указания того, что для обработки используется шаблонизатор, исходный код можно найти в gin в render/html.go:

package main

import (

   "github.com/gin-gonic/gin"

   "net/http"

)



func main() {

   r := gin.Default()



   r.LoadHTMLGlob("./template/*")



   r.GET("/index", func(c *gin.Context) {

      c.HTML(http.StatusOK, "index.tmpl", gin.H{

         "title": "golang",

      })

   })



   r.Run(":8000")

}
<html>

<h1>

    {{ .title }}

</h1>

</html>

image

Context

Контекст gin проходит через весь процесс HTTP-запроса. Его можно сравнить с контекстом koa. Контекст также является основным объектом в gin. Поля, содержащиеся в этом объекте, можно увидеть из исходного кода со следующим атрибуты:

 / Context is the most important part of gin. It allows us to pass variables between middleware,

 // manage the flow, validate the JSON of a request and render a JSON response for example.

type Context struct {

   writermem responseWriter

   Request *http.Request

   Writer ResponseWriter



   Params Params

   handlers HandlersChain

   index    int8

   fullPath string



   engine *Engine

   params *Params



   // This mutex protect Keys map

 mu sync.RWMutex



   // Keys is a key/value pair exclusively for the context of each request.

 Keys map[string]interface{}



   // Errors is a list of errors attached to all the handlers/middlewares who used this context.

 Errors errorMsgs



   // Accepted defines a list of manually accepted formats for content negotiation.

 Accepted []string



   // queryCache use url.ParseQuery cached the param query result from c.Request.URL.Query()

 queryCache url.Values



   // formCache use url.ParseQuery cached PostForm contains the parsed form data from POST, PATCH,

 // or PUT body parameters.

 formCache url.Values



   // SameSite allows a server to define a cookie attribute making it impossible for

 // the browser to send this cookie along with cross-site requests.

 sameSite http.SameSite

}

Вышеупомянутые операции с запросом, postForm, param, header, cookie и т. д. связаны с контекстом.Контекст также обеспечивает доступ к базовым метаданным, Get и Set, так что мы можем поместить требуемые (особенно кросс промежуточного программного обеспечения) используемые) данные навешивается на контекст, который по сути хранится в c.Keys:

package main

import (

   "github.com/gin-gonic/gin"

   "net/http"

)



func main()  {

   r := gin.Default()

   r.GET("/user", func(c *gin.Context) {

      c.Set("key", "value")

      val, _ := c.Get("key")

      c.JSON(http.StatusOK, gin.H{

         "code": 200,

         "key": val,

      })

   })

   r.Run(":8000")

}

image

image

В дополнение к хранилищу Get, gin также имеет встроенный MustGet (паника, если он не существует) и значение после утверждения типа, такое как GetString, GetBool, GetInt и т. д.

image

image

Методы доступа к метаданным следующие:



 /************************************/

 /******** METADATA MANAGEMENT********/

 /************************************/



func (c *Context) Set(key string, value interface{}) {}



 // Get returns the value for the given key, ie: (value, true).

 // If the value does not exists it returns (nil, false)

func (c *Context) Get(key string) (value interface{}, exists bool) {}



 // MustGet returns the value for the given key if it exists, otherwise it panics.

func (c *Context) MustGet(key string) interface{} {}



 // GetString returns the value associated with the key as a string.

func (c *Context) GetString(key string) (s string) {}



 // GetBool returns the value associated with the key as a boolean.

func (c *Context) GetBool(key string) (b bool) {}



 // GetInt returns the value associated with the key as an integer.

func (c *Context) GetInt(key string) (i int) {}



 // GetInt64 returns the value associated with the key as an integer.

func (c *Context) GetInt64(key string) (i64 int64) {}



 // GetUint returns the value associated with the key as an unsigned integer.

func (c *Context) GetUint(key string) (ui uint) {

}



 // GetUint64 returns the value associated with the key as an unsigned integer.

func (c *Context) GetUint64(key string) (ui64 uint64) {}



 // GetFloat64 returns the value associated with the key as a float64.

func (c *Context) GetFloat64(key string) (f64 float64) {}



 // GetTime returns the value associated with the key as time.

func (c *Context) GetTime(key string) (t time.Time) {}



 // GetDuration returns the value associated with the key as a duration.

func (c *Context) GetDuration(key string) (d time.Duration) {}



 // GetStringSlice returns the value associated with the key as a slice of strings.

func (c *Context) GetStringSlice(key string) (ss []string) {}



 // GetStringMap returns the value associated with the key as a map of interfaces.

func (c *Context) GetStringMap(key string) (sm map[string]interface{}) {}



 // GetStringMapString returns the value associated with the key as a map of strings.

func (c *Context) GetStringMapString(key string) (sms map[string]string) {}



 // GetStringMapStringSlice returns the value associated with the key as a map to a slice of strings.

func (c *Context) GetStringMapStringSlice(key string) (smss map[string][]string) {}

В gin данные запроса для query, postForm, param и т. д. называются Input Data.Из исходного кода gin мы видим, что методы в этой части в основном включают в себя метод получения информации, такой как query, postForm и param и параметры привязки.Исходный код выглядит следующим образом:



 /************************************/

 /************ INPUT DATA ************/

 /************************************/



 // Param returns the value of the URL param.

 // It is a shortcut for c.Params.ByName(key)

 //     router.GET("/user/:id", func(c *gin.Context) {

 //         // a GET request to /user/john

 //         id := c.Param("id") // id == "john"

 //     })

func (c *Context) Param(key string) string {

   return c.Params.ByName(key)

}



 // Query returns the keyed url query value if it exists,

 // otherwise it returns an empty string `("")`.

 // It is shortcut for `c.Request.URL.Query().Get(key)`

 //     GET /path?id=1234&name=Manu&value=

 //        c.Query("id") == "1234"

 //        c.Query("name") == "Manu"

 //        c.Query("value") == ""

 //        c.Query("wtf") == ""

func (c *Context) Query(key string) string {

   value, _ := c.GetQuery(key)

   return value

}



 // DefaultQuery returns the keyed url query value if it exists,

 // otherwise it returns the specified defaultValue string.

 // See: Query() and GetQuery() for further information.

 //     GET /?name=Manu&lastname=

 //     c.DefaultQuery("name", "unknown") == "Manu"

 //     c.DefaultQuery("id", "none") == "none"

 //     c.DefaultQuery("lastname", "none") == ""

func (c *Context) DefaultQuery(key, defaultValue string) string {

   if value, ok := c.GetQuery(key); ok {

      return value

   }

   return defaultValue

}



 // GetQuery is like Query(), it returns the keyed url query value

 // if it exists `(value, true)` (even when the value is an empty string),

 // otherwise it returns `("", false)`.

 // It is shortcut for `c.Request.URL.Query().Get(key)`

 //     GET /?name=Manu&lastname=

 //     ("Manu", true) == c.GetQuery("name")

 //     ("", false) == c.GetQuery("id")

 //     ("", true) == c.GetQuery("lastname")

func (c *Context) GetQuery(key string) (string, bool) {

   if values, ok := c.GetQueryArray(key); ok {

      return values[0], ok

   }

   return "", false

}



 // QueryArray returns a slice of strings for a given query key.

 // The length of the slice depends on the number of params with the given key.

func (c *Context) QueryArray(key string) []string {

   values, _ := c.GetQueryArray(key)

   return values

}



func (c *Context) initQueryCache() {

   if c.queryCache == nil {

      if c.Request != nil {

         c.queryCache = c.Request.URL.Query()

      } else {

         c.queryCache = url.Values{}

      }

   }

}



 // GetQueryArray returns a slice of strings for a given query key, plus

 // a boolean value whether at least one value exists for the given key.

func (c *Context) GetQueryArray(key string) ([]string, bool) {

   c.initQueryCache()

   if values, ok := c.queryCache[key]; ok && len(values) > 0 {

      return values, true

   }

   return []string{}, false

}



 // QueryMap returns a map for a given query key.

func (c *Context) QueryMap(key string) map[string]string {

   dicts, _ := c.GetQueryMap(key)

   return dicts

}



 // GetQueryMap returns a map for a given query key, plus a boolean value

 // whether at least one value exists for the given key.

func (c *Context) GetQueryMap(key string) (map[string]string, bool) {

   c.initQueryCache()

   return c.get(c.queryCache, key)

}



 // PostForm returns the specified key from a POST urlencoded form or multipart form

 // when it exists, otherwise it returns an empty string `("")`.

func (c *Context) PostForm(key string) string {

   value, _ := c.GetPostForm(key)

   return value

}



 // DefaultPostForm returns the specified key from a POST urlencoded form or multipart form

 // when it exists, otherwise it returns the specified defaultValue string.

 // See: PostForm() and GetPostForm() for further information.

func (c *Context) DefaultPostForm(key, defaultValue string) string {

   if value, ok := c.GetPostForm(key); ok {

      return value

   }

   return defaultValue

}



 // GetPostForm is like PostForm(key). It returns the specified key from a POST urlencoded

 // form or multipart form when it exists `(value, true)` (even when the value is an empty string),

 // otherwise it returns ("", false).

 // For example, during a PATCH request to update the user's email:

 //     email=mail@example.com  -->  ("mail@example.com", true) := GetPostForm("email") // set email to "mail@example.com"

 //        email=                  -->  ("", true) := GetPostForm("email") // set email to ""

 //                             -->  ("", false) := GetPostForm("email") // do nothing with email

func (c *Context) GetPostForm(key string) (string, bool) {

   if values, ok := c.GetPostFormArray(key); ok {

      return values[0], ok

   }

   return "", false

}



 // PostFormArray returns a slice of strings for a given form key.

 // The length of the slice depends on the number of params with the given key.

func (c *Context) PostFormArray(key string) []string {

   values, _ := c.GetPostFormArray(key)

   return values

}



func (c *Context) initFormCache() {

   if c.formCache == nil {

      c.formCache = make(url.Values)

      req := c.Request

 if err := req.ParseMultipartForm(c.engine.MaxMultipartMemory); err != nil {

         if err != http.ErrNotMultipart {

            debugPrint("error on parse multipart form array: %v", err)

         }

      }

      c.formCache = req.PostForm

 }

}



 // GetPostFormArray returns a slice of strings for a given form key, plus

 // a boolean value whether at least one value exists for the given key.

func (c *Context) GetPostFormArray(key string) ([]string, bool) {

   c.initFormCache()

   if values := c.formCache[key]; len(values) > 0 {

      return values, true

   }

   return []string{}, false

}



 // PostFormMap returns a map for a given form key.

func (c *Context) PostFormMap(key string) map[string]string {

   dicts, _ := c.GetPostFormMap(key)

   return dicts

}



 // GetPostFormMap returns a map for a given form key, plus a boolean value

 // whether at least one value exists for the given key.

func (c *Context) GetPostFormMap(key string) (map[string]string, bool) {

   c.initFormCache()

   return c.get(c.formCache, key)

}



 // get is an internal method and returns a map which satisfy conditions.

func (c *Context) get(m map[string][]string, key string) (map[string]string, bool) {

   dicts := make(map[string]string)

   exist := false

   for k, v := range m {

      if i := strings.IndexByte(k, '['); i >= 1 && k[0:i] == key {

         if j := strings.IndexByte(k[i+1:], ']'); j >= 1 {

            exist = true

            dicts[k[i+1:][:j]] = v[0]

         }

      }

   }

   return dicts, exist

}



 // FormFile returns the first file for the provided form key.

func (c *Context) FormFile(name string) (*multipart.FileHeader, error) {

   if c.Request.MultipartForm == nil {

      if err := c.Request.ParseMultipartForm(c.engine.MaxMultipartMemory); err != nil {

         return nil, err

      }

   }

   f, fh, err := c.Request.FormFile(name)

   if err != nil {

      return nil, err

   }

   f.Close()

   return fh, err

}



 // MultipartForm is the parsed multipart form, including file uploads.

func (c *Context) MultipartForm() (*multipart.Form, error) {

   err := c.Request.ParseMultipartForm(c.engine.MaxMultipartMemory)

   return c.Request.MultipartForm, err

}



 // SaveUploadedFile uploads the form file to specific dst.

func (c *Context) SaveUploadedFile(file *multipart.FileHeader, dst string) error {

   src, err := file.Open()

   if err != nil {

      return err

   }

   defer src.Close()



   out, err := os.Create(dst)

   if err != nil {

      return err

   }

   defer out.Close()



   _, err = io.Copy(out, src)

   return err

}



 // Bind checks the Content-Type to select a binding engine automatically,

 // Depending the "Content-Type" header different bindings are used:

 //     "application/json" --> JSON binding

 //     "application/xml"  --> XML binding

 // otherwise --> returns an error.

 // It parses the request's body as JSON if Content-Type == "application/json" using JSON or XML as a JSON input.

 // It decodes the json payload into the struct specified as a pointer.

 // It writes a 400 error and sets Content-Type header "text/plain" in the response if input is not valid.

func (c *Context) Bind(obj interface{}) error {

   b := binding.Default(c.Request.Method, c.ContentType())

   return c.MustBindWith(obj, b)

}



 // BindJSON is a shortcut for c.MustBindWith(obj, binding.JSON).

func (c *Context) BindJSON(obj interface{}) error {

   return c.MustBindWith(obj, binding.JSON)

}



 // BindXML is a shortcut for c.MustBindWith(obj, binding.BindXML).

func (c *Context) BindXML(obj interface{}) error {

   return c.MustBindWith(obj, binding.XML)

}



 // BindQuery is a shortcut for c.MustBindWith(obj, binding.Query).

func (c *Context) BindQuery(obj interface{}) error {

   return c.MustBindWith(obj, binding.Query)

}



 // BindYAML is a shortcut for c.MustBindWith(obj, binding.YAML).

func (c *Context) BindYAML(obj interface{}) error {

   return c.MustBindWith(obj, binding.YAML)

}



 // BindHeader is a shortcut for c.MustBindWith(obj, binding.Header).

func (c *Context) BindHeader(obj interface{}) error {

   return c.MustBindWith(obj, binding.Header)

}



 // BindUri binds the passed struct pointer using binding.Uri.

 // It will abort the request with HTTP 400 if any error occurs.

func (c *Context) BindUri(obj interface{}) error {

   if err := c.ShouldBindUri(obj); err != nil {

      c.AbortWithError(http.StatusBadRequest, err).SetType(ErrorTypeBind) // nolint: errcheck

 return err

   }

   return nil

}



 // MustBindWith binds the passed struct pointer using the specified binding engine.

 // It will abort the request with HTTP 400 if any error occurs.

 // See the binding package.

func (c *Context) MustBindWith(obj interface{}, b binding.Binding) error {

   if err := c.ShouldBindWith(obj, b); err != nil {

      c.AbortWithError(http.StatusBadRequest, err).SetType(ErrorTypeBind) // nolint: errcheck

 return err

   }

   return nil

}



 // ShouldBind checks the Content-Type to select a binding engine automatically,

 // Depending the "Content-Type" header different bindings are used:

 //     "application/json" --> JSON binding

 //     "application/xml"  --> XML binding

 // otherwise --> returns an error

 // It parses the request's body as JSON if Content-Type == "application/json" using JSON or XML as a JSON input.

 // It decodes the json payload into the struct specified as a pointer.

 // Like c.Bind() but this method does not set the response status code to 400 and abort if the json is not valid.

func (c *Context) ShouldBind(obj interface{}) error {

   b := binding.Default(c.Request.Method, c.ContentType())

   return c.ShouldBindWith(obj, b)

}



 // ShouldBindJSON is a shortcut for c.ShouldBindWith(obj, binding.JSON).

func (c *Context) ShouldBindJSON(obj interface{}) error {

   return c.ShouldBindWith(obj, binding.JSON)

}



 // ShouldBindXML is a shortcut for c.ShouldBindWith(obj, binding.XML).

func (c *Context) ShouldBindXML(obj interface{}) error {

   return c.ShouldBindWith(obj, binding.XML)

}



 // ShouldBindQuery is a shortcut for c.ShouldBindWith(obj, binding.Query).

func (c *Context) ShouldBindQuery(obj interface{}) error {

   return c.ShouldBindWith(obj, binding.Query)

}



 // ShouldBindYAML is a shortcut for c.ShouldBindWith(obj, binding.YAML).

func (c *Context) ShouldBindYAML(obj interface{}) error {

   return c.ShouldBindWith(obj, binding.YAML)

}



 // ShouldBindHeader is a shortcut for c.ShouldBindWith(obj, binding.Header).

func (c *Context) ShouldBindHeader(obj interface{}) error {

   return c.ShouldBindWith(obj, binding.Header)

}



 // ShouldBindUri binds the passed struct pointer using the specified binding engine.

func (c *Context) ShouldBindUri(obj interface{}) error {

   m := make(map[string][]string)

   for _, v := range c.Params {

      m[v.Key] = []string{v.Value}

   }

   return binding.Uri.BindUri(m, obj)

}



 // ShouldBindWith binds the passed struct pointer using the specified binding engine.

 // See the binding package.

func (c *Context) ShouldBindWith(obj interface{}, b binding.Binding) error {

   return b.Bind(c.Request, obj)

}



 // ShouldBindBodyWith is similar with ShouldBindWith, but it stores the request

 // body into the context, and reuse when it is called again.

 //

 // NOTE: This method reads the body before binding. So you should use

 // ShouldBindWith for better performance if you need to call only once.

func (c *Context) ShouldBindBodyWith(obj interface{}, bb binding.BindingBody) (err error) {

   var body []byte

   if cb, ok := c.Get(BodyBytesKey); ok {

      if cbb, ok := cb.([]byte); ok {

         body = cbb

      }

   }

   if body == nil {

      body, err = ioutil.ReadAll(c.Request.Body)

      if err != nil {

         return err

      }

      c.Set(BodyBytesKey, body)

   }

   return bb.BindBody(body, obj)

}



 // ClientIP implements a best effort algorithm to return the real client IP.

 // It called c.RemoteIP() under the hood, to check if the remote IP is a trusted proxy or not.

 // If it's it will then try to parse the headers defined in Engine.RemoteIPHeaders (defaulting to [X-Forwarded-For, X-Real-Ip]).

 // If the headers are nots syntactically valid OR the remote IP does not correspong to a trusted proxy,

 // the remote IP (coming form Request.RemoteAddr) is returned.

func (c *Context) ClientIP() string {

   if c.engine.AppEngine {

      if addr := c.requestHeader("X-Appengine-Remote-Addr"); addr != "" {

         return addr

      }

   }



   remoteIP, trusted := c.RemoteIP()

   if remoteIP == nil {

      return ""

   }



   if trusted && c.engine.ForwardedByClientIP && c.engine.RemoteIPHeaders != nil {

      for _, headerName := range c.engine.RemoteIPHeaders {

         ip, valid := validateHeader(c.requestHeader(headerName))

         if valid {

            return ip

         }

      }

   }

   return remoteIP.String()

}



 // RemoteIP parses the IP from Request.RemoteAddr, normalizes and returns the IP (without the port).

 // It also checks if the remoteIP is a trusted proxy or not.

 // In order to perform this validation, it will see if the IP is contained within at least one of the CIDR blocks

 // defined in Engine.TrustedProxies

func (c *Context) RemoteIP() (net.IP, bool) {

   ip, _, err := net.SplitHostPort(strings.TrimSpace(c.Request.RemoteAddr))

   if err != nil {

      return nil, false

   }

   remoteIP := net.ParseIP(ip)

   if remoteIP == nil {

      return nil, false

   }



   if c.engine.trustedCIDRs != nil {

      for _, cidr := range c.engine.trustedCIDRs {

         if cidr.Contains(remoteIP) {

            return remoteIP, true

         }

      }

   }



   return remoteIP, false

}



func validateHeader(header string) (clientIP string, valid bool) {

   if header == "" {

      return "", false

   }

   items := strings.Split(header, ",")

   for i, ipStr := range items {

      ipStr = strings.TrimSpace(ipStr)

      ip := net.ParseIP(ipStr)

      if ip == nil {

         return "", false

      }



      // We need to return the first IP in the list, but,

 // we should not early return since we need to validate that

 // the rest of the header is syntactically valid

 if i == 0 {

         clientIP = ipStr

         valid = true

      }

   }

   return

}



 // ContentType returns the Content-Type header of the request.

func (c *Context) ContentType() string {

   return filterFlags(c.requestHeader("Content-Type"))

}



 // IsWebsocket returns true if the request headers indicate that a websocket

 // handshake is being initiated by the client.

func (c *Context) IsWebsocket() bool {

   if strings.Contains(strings.ToLower(c.requestHeader("Connection")), "upgrade") &&

      strings.EqualFold(c.requestHeader("Upgrade"), "websocket") {

      return true

   }

   return false

}



func (c *Context) requestHeader(key string) string {

   return c.Request.Header.Get(key)

}

В gin упомянутый выше доступ к файлам cookie, заголовку и телу, а также c.JSON, c.HTML и т. д. определяют тип вывода вывода, который в совокупности классифицируется как RESPONSE RENDERING (рендеринг ответа). методы следующие:



 /************************************/

 /******** RESPONSE RENDERING ********/

 /************************************/



 // bodyAllowedForStatus is a copy of http.bodyAllowedForStatus non-exported function.

func bodyAllowedForStatus(status int) bool {

   switch {

   case status >= 100 && status <= 199:

      return false

   case status == http.StatusNoContent:

      return false

   case status == http.StatusNotModified:

      return false

   }

   return true

}



 // Status sets the HTTP response code.

func (c *Context) Status(code int) {

   c.Writer.WriteHeader(code)

}



 // Header is a intelligent shortcut for c.Writer.Header().Set(key, value).

 // It writes a header in the response.

 // If value == "", this method removes the header `c.Writer.Header().Del(key)`

func (c *Context) Header(key, value string) {

   if value == "" {

      c.Writer.Header().Del(key)

      return

   }

   c.Writer.Header().Set(key, value)

}



 // GetHeader returns value from request headers.

func (c *Context) GetHeader(key string) string {

   return c.requestHeader(key)

}



 // GetRawData return stream data.

func (c *Context) GetRawData() ([]byte, error) {

   return ioutil.ReadAll(c.Request.Body)

}



 // SetSameSite with cookie

func (c *Context) SetSameSite(samesite http.SameSite) {

   c.sameSite = samesite

}



 // SetCookie adds a Set-Cookie header to the ResponseWriter's headers.

 // The provided cookie must have a valid Name. Invalid cookies may be

 // silently dropped.

func (c *Context) SetCookie(name, value string, maxAge int, path, domain string, secure, httpOnly bool) {

   if path == "" {

      path = "/"

   }

   http.SetCookie(c.Writer, &http.Cookie{

      Name:     name,

      Value:    url.QueryEscape(value),

      MaxAge:   maxAge,

      Path:     path,

      Domain:   domain,

      SameSite: c.sameSite,

      Secure:   secure,

      HttpOnly: httpOnly,

   })

}



 // Cookie returns the named cookie provided in the request or

 // ErrNoCookie if not found. And return the named cookie is unescaped.

 // If multiple cookies match the given name, only one cookie will

 // be returned.

func (c *Context) Cookie(name string) (string, error) {

   cookie, err := c.Request.Cookie(name)

   if err != nil {

      return "", err

   }

   val, _ := url.QueryUnescape(cookie.Value)

   return val, nil

}



 // Render writes the response headers and calls render.Render to render data.

func (c *Context) Render(code int, r render.Render) {

   c.Status(code)



   if !bodyAllowedForStatus(code) {

      r.WriteContentType(c.Writer)

      c.Writer.WriteHeaderNow()

      return

   }



   if err := r.Render(c.Writer); err != nil {

      panic(err)

   }

}



 // HTML renders the HTTP template specified by its file name.

 // It also updates the HTTP code and sets the Content-Type as "text/html".

 // See http://golang.org/doc/articles/wiki/

func (c *Context) HTML(code int, name string, obj interface{}) {

   instance := c.engine.HTMLRender.Instance(name, obj)

   c.Render(code, instance)

}



 // IndentedJSON serializes the given struct as pretty JSON (indented + endlines) into the response body.

 // It also sets the Content-Type as "application/json".

 // WARNING: we recommend to use this only for development purposes since printing pretty JSON is

 // more CPU and bandwidth consuming. Use Context.JSON() instead.

func (c *Context) IndentedJSON(code int, obj interface{}) {

   c.Render(code, render.IndentedJSON{Data: obj})

}



 // SecureJSON serializes the given struct as Secure JSON into the response body.

 // Default prepends "while(1)," to response body if the given struct is array values.

 // It also sets the Content-Type as "application/json".

func (c *Context) SecureJSON(code int, obj interface{}) {

   c.Render(code, render.SecureJSON{Prefix: c.engine.secureJSONPrefix, Data: obj})

}



 // JSONP serializes the given struct as JSON into the response body.

 // It adds padding to response body to request data from a server residing in a different domain than the client.

 // It also sets the Content-Type as "application/javascript".

func (c *Context) JSONP(code int, obj interface{}) {

   callback := c.DefaultQuery("callback", "")

   if callback == "" {

      c.Render(code, render.JSON{Data: obj})

      return

   }

   c.Render(code, render.JsonpJSON{Callback: callback, Data: obj})

}



 // JSON serializes the given struct as JSON into the response body.

 // It also sets the Content-Type as "application/json".

func (c *Context) JSON(code int, obj interface{}) {

   c.Render(code, render.JSON{Data: obj})

}



 // AsciiJSON serializes the given struct as JSON into the response body with unicode to ASCII string.

 // It also sets the Content-Type as "application/json".

func (c *Context) AsciiJSON(code int, obj interface{}) {

   c.Render(code, render.AsciiJSON{Data: obj})

}



 // PureJSON serializes the given struct as JSON into the response body.

 // PureJSON, unlike JSON, does not replace special html characters with their unicode entities.

func (c *Context) PureJSON(code int, obj interface{}) {

   c.Render(code, render.PureJSON{Data: obj})

}



 // XML serializes the given struct as XML into the response body.

 // It also sets the Content-Type as "application/xml".

func (c *Context) XML(code int, obj interface{}) {

   c.Render(code, render.XML{Data: obj})

}



 // YAML serializes the given struct as YAML into the response body.

func (c *Context) YAML(code int, obj interface{}) {

   c.Render(code, render.YAML{Data: obj})

}



 // ProtoBuf serializes the given struct as ProtoBuf into the response body.

func (c *Context) ProtoBuf(code int, obj interface{}) {

   c.Render(code, render.ProtoBuf{Data: obj})

}



 // String writes the given string into the response body.

func (c *Context) String(code int, format string, values ...interface{}) {

   c.Render(code, render.String{Format: format, Data: values})

}



 // Redirect returns a HTTP redirect to the specific location.

func (c *Context) Redirect(code int, location string) {

   c.Render(-1, render.Redirect{

      Code:     code,

      Location: location,

      Request:  c.Request,

   })

}



 // Data writes some data into the body stream and updates the HTTP code.

func (c *Context) Data(code int, contentType string, data []byte) {

   c.Render(code, render.Data{

      ContentType: contentType,

      Data:        data,

   })

}



 // DataFromReader writes the specified reader into the body stream and updates the HTTP code.

func (c *Context) DataFromReader(code int, contentLength int64, contentType string, reader io.Reader, extraHeaders map[string]string) {

   c.Render(code, render.Reader{

      Headers:       extraHeaders,

      ContentType:   contentType,

      ContentLength: contentLength,

      Reader:        reader,

   })

}



 // File writes the specified file into the body stream in an efficient way.

func (c *Context) File(filepath string) {

   http.ServeFile(c.Writer, c.Request, filepath)

}



 // FileFromFS writes the specified file from http.FileSystem into the body stream in an efficient way.

func (c *Context) FileFromFS(filepath string, fs http.FileSystem) {

   defer func(old string) {

      c.Request.URL.Path = old

   }(c.Request.URL.Path)



   c.Request.URL.Path = filepath



   http.FileServer(fs).ServeHTTP(c.Writer, c.Request)

}



 // FileAttachment writes the specified file into the body stream in an efficient way

 // On the client side, the file will typically be downloaded with the given filename

func (c *Context) FileAttachment(filepath, filename string) {

   c.Writer.Header().Set("Content-Disposition", fmt.Sprintf("attachment; filename="%s"", filename))

   http.ServeFile(c.Writer, c.Request, filepath)

}



 // SSEvent writes a Server-Sent Event into the body stream.

func (c *Context) SSEvent(name string, message interface{}) {

   c.Render(-1, sse.Event{

      Event: name,

      Data:  message,

   })

}



 // Stream sends a streaming response and returns a boolean

 // indicates "Is client disconnected in middle of stream"

func (c *Context) Stream(step func(w io.Writer) bool) bool {

   w := c.Writer

 clientGone := w.CloseNotify()

   for {

      select {

      case <-clientGone:

         return true

      default:

         keepOpen := step(w)

         w.Flush()

         if !keepOpen {

            return false

         }

      }

   }

}

Http Request

Используя пакет http в golang, можно легко реализовать простой сервер следующим образом:

package main



import (

   "fmt"

   "log"

   "net/http"

)



func main() {

   http.HandleFunc("/user", func(writer http.ResponseWriter, request *http.Request) {

      //writer.Write()

 _, err :=writer.Write([]byte("hello world"))

      if err!= nil {

         fmt.Println(err)

      }

   })

   err := http.ListenAndServe(":8000",nil)

   if err != nil {

      log.Fatal("ListenAndServe: ", err)

   }

}

Как и gin, обработчик маршрута включает два объекта, http.ResponseWriter и http.Request.В gin http.ResponseWriter заключен в объект *ResponseWriter, а http.Request напрямую связан с контекстом.

image

промежуточное ПО

Промежуточное программное обеспечение gin можно сравнить с промежуточным программным обеспечением koa. Это модель лука. В центре этой модели находится обработчик, который, наконец, обрабатывает запрос, называемый основным обработчиком, а другой называется обработчиком промежуточного программного обеспечения. Каждый дескриптор промежуточного программного обеспечения можно разделить на две части.,с потоком запроса,левый вход,правый выход,и точка разделения следующая.Суть заключается в выполнении цепочки функций через этот следующий.Каждое промежуточное ПО соответствует принципу первым пришел, последним вышел:

image

Эта модель может отражаться в следующих двух глобально используемых компонентах промежуточного слоя:

package main



import (

"fmt"

"github.com/gin-gonic/gin"

"net/http"

)



func m1() gin.HandlerFunc{

   return func(c *gin.Context) {

      fmt.Println("m1 start")

      c.Next()

      fmt.Println("m1 end")

   }

}



func m2() gin.HandlerFunc {

   return func(c *gin.Context) {

      fmt.Println("m2 start")

      c.Next()

      fmt.Println("m2 end")

   }

}



func main() {

   r := gin.New()

   r.Use(m1())

   r.Use(m2())

   r.GET("/user", func(c *gin.Context) {

      c.JSON(http.StatusOK, gin.H{

         "code": 200,

         "data": "user",

      })

   })



   r.Run(":8000")

}

Когда приходит запрос, вывод будет m1 start, m2 start, m2 end, m1 start:

image

В наиболее часто используемом gin.Default выше Logger и Recovery используются по умолчанию в качестве глобального промежуточного программного обеспечения, которые обрабатываются как журналы и паники соответственно.Этот метод прямого использования метода Use движка для монтирования промежуточного программного обеспечения заставит промежуточное программное обеспечение в глобальной

image

Подобно koa, мы можем монтировать промежуточное ПО на маршрутах и ​​группах маршрутизации, так что это промежуточное ПО будет действовать только в соответствующих маршрутах, как показано ниже, m1 будет действовать только в группе маршрутизации пользователя, m2 будет действовать только в группе маршрутизации пользователя. группа Вступает в силу по маршруту / article:

package main



import (

   "fmt"

   "github.com/gin-gonic/gin"

   "net/http"

)



func m1() gin.HandlerFunc{

   return func(c *gin.Context) {

      fmt.Println("m1 start")

      c.Next()

      fmt.Println("m1 end")

   }

}



func m2() gin.HandlerFunc {

   return func(c *gin.Context) {

      fmt.Println("m2 start")

      c.Next()

      fmt.Println("m2 end")

   }

}



func main() {

   r := gin.New()

   userRouter := r.Group("/user", m1())

   userRouter.GET("/info", func(c *gin.Context) {

      c.JSON(http.StatusOK, gin.H{

         "code": 200,

         "data": "info",

      })

   })

   r.GET("/article", m2(), func(c *gin.Context) {

      c.JSON(http.StatusOK, gin.H{

         "code": 200,

         "data": "article",

      })

   })



   r.Run(":8000")

}

В реальной разработке часто необходимо настраивать промежуточное ПО. Промежуточное ПО — это, по сути, функция-обработчик, то есть функция с *gin.Context в качестве параметра. В реальной разработке промежуточное ПО может быть функцией, которая возвращает обработчик. можно вызвать эту функцию в любое время.Если это обработчик, вам не нужно вызывать его, вы можете напрямую использовать его как параметр:

package main



import (

   "fmt"

   "github.com/gin-gonic/gin"

   "net/http"

)



func middle1() gin.HandlerFunc{

   return func(c *gin.Context) {

      fmt.Println("middleware 1")

      c.Next()

   }

}



func middle2(c *gin.Context) {

   fmt.Println("middleware 2")

   c.Next()

}



func main()  {

   r := gin.Default()

   r.Use(middle1())

   r.Use(middle2)

   r.GET("/user", func(c *gin.Context) {

      c.JSON(http.StatusOK, gin.H{

         "data": "user",

      })

   })



   r.Run(":8000")

}

В дополнение к Next промежуточное ПО также может использовать методы Abort, AbortWithStatus, AbortWithStatusJSON, AbortWithError для перехвата запросов, которые часто могут использоваться для аутентификации, аутентификации параметров и других предварительных процессов, как показано ниже, когда заголовок запроса не имеет токена. , то запрос будет перехвачен, напрямую верните без разрешения:

package main



import (

   "github.com/gin-gonic/gin"

   "net/http"

)



func auth() gin.HandlerFunc{

   return func(c *gin.Context) {

      token := c.GetHeader("token")

      if token == "" {

         c.AbortWithStatusJSON(401, gin.H{

            "message": "没有权限",

         })

      }

      c.Next()

   }

}



func main()  {

   r := gin.Default()

   r.Use(auth())

   r.GET("/user", func(c *gin.Context) {

      c.JSON(http.StatusOK, gin.H{

         "data": "user",

      })

   })

   r.Run(":8000")

}

image

В официальной документации gin вы можете увидеть список официально поддерживаемого и поддерживаемого извне промежуточного программного обеспечения:GitHub.com/gin-a-oh-nickname/from…

Строительные работы

Ссылка на репозиторий с открытым исходным кодом

Ссылаться на

Woohoo.Видя лазейки.Талант/милосердие

Хао Хунфан.com/post/2019-0…

Tickets.WeChat.QQ.com/Yes/OI8TU DW ВКонтакте…

GitHub.com/flower неправильный…

The Top 85 Gin Open Source Projects