Нарисуйте солнце с помощью three.js

WebGL three.js
Нарисуйте солнце с помощью three.js

предисловие

Всем привет, это волшебник CSS - alphardex.

В этой статье мы будем использовать three.js для имитации эффекта анимации солнца.

sun.gif

Давайте начнем!

Готов к работе

авторышаблон three.js: Нажмите вилку в правом нижнем углу, чтобы скопировать копию.

нарисовать солнце

закадровый рендеринг

Основная идея реализации солнца заключается в следующем:

  1. Создавать шум (в этой статье выбраноsimplex noiseкак шум)
  2. Рендерим шум как кубическую карту на сфере
  3. Мультисэмплинг текстуры сферы для имитации эффекта движения солнца.
  4. Создает градиентное излучение в виде кольца вокруг периферии солнца.
class Sun extends Base {
  constructor(sel: string, debug: boolean) {
    super(sel, debug);
    this.clock = new THREE.Clock();
    this.cameraPosition = new THREE.Vector3(0, 0, 2);
  }
  // 初始化
  init() {
    this.createScene();
    this.createPerspectiveCamera();
    this.createRenderer();
    this.createSunNoiseMaterial();
    this.createCubeRt();
    this.createSunShapeMaterial();
    this.createSun();
    this.createSunRingMaterial();
    this.createSunRing();
    this.createLight();
    this.trackMousePos();
    this.createOrbitControls();
    this.addListeners();
    this.setLoop();
  }
  // 创建噪声材质
  createSunNoiseMaterial() {
    const sunNoiseMaterial = new THREE.ShaderMaterial({
      vertexShader: sunNoiseVertexShader,
      fragmentShader: sunNoiseFragmentShader,
      side: THREE.DoubleSide,
      uniforms: {
        uTime: {
          value: 0
        },
        uMouse: {
          value: new THREE.Vector2(0, 0)
        },
        uResolution: {
          value: new THREE.Vector2(window.innerWidth, window.innerHeight)
        }
      }
    });
    this.sunNoiseMaterial = sunNoiseMaterial;
  }
  // 创建立方体离屏渲染目标,将其作为太阳本体的噪声贴图
  createCubeRt() {
    const cubeRt = new THREE.WebGLCubeRenderTarget(256);
    this.cubeRt = cubeRt;
    const cubeCamera = new THREE.CubeCamera(0.1, 10, cubeRt);
    this.cubeCamera = cubeCamera;
    const cubeScene = new THREE.Scene();
    const geometry = new THREE.SphereBufferGeometry(1, 100, 100);
    const material = this.sunNoiseMaterial;
    this.createMesh(
      {
        geometry,
        material
      },
      cubeScene
    );
    this.cubeScene = cubeScene;
  }
  // 创建太阳本体材质
  createSunShapeMaterial() {
    const sunShapeMaterial = new THREE.ShaderMaterial({
      vertexShader: sunShapeVertexShader,
      fragmentShader: sunShapeFragmentShader,
      side: THREE.DoubleSide,
      uniforms: {
        uTime: {
          value: 0
        },
        uMouse: {
          value: new THREE.Vector2(0, 0)
        },
        uResolution: {
          value: new THREE.Vector2(window.innerWidth, window.innerHeight)
        },
        uNoiseTexture: {
          value: null
        },
        uVelocity: {
          value: 0.05
        },
        uBrightness: {
          value: 0.33
        },
        uStagger: {
          value: 16
        }
      }
    });
    this.sunShapeMaterial = sunShapeMaterial;
  }
  // 创建太阳
  createSun() {
    const geometry = new THREE.SphereBufferGeometry(1, 100, 100);
    const material = this.sunShapeMaterial;
    this.createMesh({
      geometry,
      material
    });
  }
  // 创建太阳环材质
  createSunRingMaterial() {
    const sunRingMaterial = new THREE.ShaderMaterial({
      vertexShader: sunRingVertexShader,
      fragmentShader: sunRingFragmentShader,
      side: THREE.BackSide,
      uniforms: {
        uTime: {
          value: 0
        },
        uMouse: {
          value: new THREE.Vector2(0, 0)
        },
        uResolution: {
          value: new THREE.Vector2(window.innerWidth, window.innerHeight)
        }
      }
    });
    this.sunRingMaterial = sunRingMaterial;
  }
  // 创建太阳环
  createSunRing() {
    const geometry = new THREE.SphereBufferGeometry(1.2, 100, 100);
    const material = this.sunRingMaterial;
    this.createMesh({
      geometry,
      material
    });
  }
  // 动画
  update() {
    const elapsedTime = this.clock.getElapsedTime();
    const mousePos = this.mousePos;
    if (this.sunNoiseMaterial && this.sunShapeMaterial) {
      this.cubeCamera.update(this.renderer, this.cubeScene);
      this.sunNoiseMaterial.uniforms.uTime.value = elapsedTime;
      this.sunNoiseMaterial.uniforms.uMouse.value = mousePos;
      this.sunShapeMaterial.uniforms.uTime.value = elapsedTime;
      this.sunShapeMaterial.uniforms.uMouse.value = mousePos;
      this.sunShapeMaterial.uniforms.uNoiseTexture.value = this.cubeRt.texture;
      this.sunRingMaterial.uniforms.uTime.value = elapsedTime;
      this.sunRingMaterial.uniforms.uMouse.value = mousePos;
    }
  }
}

1.png

Теперь, когда вы готовы к рендерингу вне экрана, вы можете перейти к теме этой статьи — шейдерам.

шейдер шума

вершина

То же, что и в шаблоне, опустить

Фрагмент

Используется шум в сочетании с фрактальным броуновским движением.fbmреализовать шумовую анимацию

Суть фрактального броуновского движения заключается в увеличении частоты шума и уменьшении амплитуды шума за счет циклического движения.

vec4 mod289(vec4 x) {
  return x - floor(x * (1.0 / 289.0)) * 289.0; }

float mod289(float x) {
  return x - floor(x * (1.0 / 289.0)) * 289.0; }

vec4 permute(vec4 x) {
     return mod289(((x*34.0)+1.0)*x);
}

float permute(float x) {
     return mod289(((x*34.0)+1.0)*x);
}

vec4 taylorInvSqrt(vec4 r)
{
  return 1.79284291400159 - 0.85373472095314 * r;
}

float taylorInvSqrt(float r)
{
  return 1.79284291400159 - 0.85373472095314 * r;
}

vec4 grad4(float j, vec4 ip)
  {
  const vec4 ones = vec4(1.0, 1.0, 1.0, -1.0);
  vec4 p,s;

  p.xyz = floor( fract (vec3(j) * ip.xyz) * 7.0) * ip.z - 1.0;
  p.w = 1.5 - dot(abs(p.xyz), ones.xyz);
  s = vec4(lessThan(p, vec4(0.0)));
  p.xyz = p.xyz + (s.xyz*2.0 - 1.0) * s.www;

  return p;
  }

// (sqrt(5) - 1)/4 = F4, used once below
#define F4 0.309016994374947451

float snoise(vec4 v)
  {
  const vec4  C = vec4( 0.138196601125011,  // (5 - sqrt(5))/20  G4
                        0.276393202250021,  // 2 * G4
                        0.414589803375032,  // 3 * G4
                       -0.447213595499958); // -1 + 4 * G4

// First corner
  vec4 i  = floor(v + dot(v, vec4(F4)) );
  vec4 x0 = v -   i + dot(i, C.xxxx);

// Other corners

// Rank sorting originally contributed by Bill Licea-Kane, AMD (formerly ATI)
  vec4 i0;
  vec3 isX = step( x0.yzw, x0.xxx );
  vec3 isYZ = step( x0.zww, x0.yyz );
//  i0.x = dot( isX, vec3( 1.0 ) );
  i0.x = isX.x + isX.y + isX.z;
  i0.yzw = 1.0 - isX;
//  i0.y += dot( isYZ.xy, vec2( 1.0 ) );
  i0.y += isYZ.x + isYZ.y;
  i0.zw += 1.0 - isYZ.xy;
  i0.z += isYZ.z;
  i0.w += 1.0 - isYZ.z;

  // i0 now contains the unique values 0,1,2,3 in each channel
  vec4 i3 = clamp( i0, 0.0, 1.0 );
  vec4 i2 = clamp( i0-1.0, 0.0, 1.0 );
  vec4 i1 = clamp( i0-2.0, 0.0, 1.0 );

  //  x0 = x0 - 0.0 + 0.0 * C.xxxx
  //  x1 = x0 - i1  + 1.0 * C.xxxx
  //  x2 = x0 - i2  + 2.0 * C.xxxx
  //  x3 = x0 - i3  + 3.0 * C.xxxx
  //  x4 = x0 - 1.0 + 4.0 * C.xxxx
  vec4 x1 = x0 - i1 + C.xxxx;
  vec4 x2 = x0 - i2 + C.yyyy;
  vec4 x3 = x0 - i3 + C.zzzz;
  vec4 x4 = x0 + C.wwww;

// Permutations
  i = mod289(i);
  float j0 = permute( permute( permute( permute(i.w) + i.z) + i.y) + i.x);
  vec4 j1 = permute( permute( permute( permute (
             i.w + vec4(i1.w, i2.w, i3.w, 1.0 ))
           + i.z + vec4(i1.z, i2.z, i3.z, 1.0 ))
           + i.y + vec4(i1.y, i2.y, i3.y, 1.0 ))
           + i.x + vec4(i1.x, i2.x, i3.x, 1.0 ));

// Gradients: 7x7x6 points over a cube, mapped onto a 4-cross polytope
// 7*7*6 = 294, which is close to the ring size 17*17 = 289.
  vec4 ip = vec4(1.0/294.0, 1.0/49.0, 1.0/7.0, 0.0) ;

  vec4 p0 = grad4(j0,   ip);
  vec4 p1 = grad4(j1.x, ip);
  vec4 p2 = grad4(j1.y, ip);
  vec4 p3 = grad4(j1.z, ip);
  vec4 p4 = grad4(j1.w, ip);

// Normalise gradients
  vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3)));
  p0 *= norm.x;
  p1 *= norm.y;
  p2 *= norm.z;
  p3 *= norm.w;
  p4 *= taylorInvSqrt(dot(p4,p4));

// Mix contributions from the five corners
  vec3 m0 = max(0.6 - vec3(dot(x0,x0), dot(x1,x1), dot(x2,x2)), 0.0);
  vec2 m1 = max(0.6 - vec2(dot(x3,x3), dot(x4,x4)            ), 0.0);
  m0 = m0 * m0;
  m1 = m1 * m1;
  return 49.0 * ( dot(m0*m0, vec3( dot( p0, x0 ), dot( p1, x1 ), dot( p2, x2 )))
               + dot(m1*m1, vec2( dot( p3, x3 ), dot( p4, x4 ) ) ) ) ;

  }

#define OCTAVES 6

uniform float uTime;
uniform vec2 uMouse;
uniform vec2 uResolution;

varying vec2 vUv;
varying vec3 vPosition;

float fbm4d(vec4 p){
    float sum=0.;
    float amp=1.;
    float scale=1.;
    for(int i=0;i<OCTAVES;i++){
        sum+=snoise(p*scale)*amp;
        p.w+=100.;
        amp*=.9;
        scale*=2.;
    }
    return sum;
}

void main(){
    vec4 p=vec4(vPosition*4.,uTime*.025);
    float noise=fbm4d(p);
    vec4 p1=vec4(vPosition*2.,uTime*.25);
    float spot=max(snoise(p1),0.);
    vec4 color=vec4(noise);
    color*=mix(1.,spot,.7);
    gl_FragColor=color;
}

онтологический шейдер

вершина

Создано 3 слоя движения (с вращением по осям xy, xz и yz соответственно), чтобы обеспечить позиционную основу для мультисэмплирования фрагментов.

mat2 rotation2d(float angle) {
	float s = sin(angle);
	float c = cos(angle);

	return mat2(
		c, -s,
		s, c
	);
}

mat4 rotation3d(vec3 axis, float angle) {
  axis = normalize(axis);
  float s = sin(angle);
  float c = cos(angle);
  float oc = 1.0 - c;

  return mat4(
		oc * axis.x * axis.x + c,           oc * axis.x * axis.y - axis.z * s,  oc * axis.z * axis.x + axis.y * s,  0.0,
    oc * axis.x * axis.y + axis.z * s,  oc * axis.y * axis.y + c,           oc * axis.y * axis.z - axis.x * s,  0.0,
    oc * axis.z * axis.x - axis.y * s,  oc * axis.y * axis.z + axis.x * s,  oc * axis.z * axis.z + c,           0.0,
		0.0,                                0.0,                                0.0,                                1.0
	);
}

vec2 rotate(vec2 v, float angle) {
	return rotation2d(angle) * v;
}

vec3 rotate(vec3 v, vec3 axis, float angle) {
	return (rotation3d(axis, angle) * vec4(v, 1.0)).xyz;
}

// https://tympanus.net/codrops/2019/10/29/real-time-multiside-refraction-in-three-steps/
vec3 getEyeVector(mat4 modelMat,vec3 pos,vec3 camPos){
    vec4 worldPosition=modelMat*vec4(pos,1.);
    vec3 eyeVector=normalize(worldPosition.xyz-camPos);
    return eyeVector;
}

const float HALF_PI=1.570796327;

uniform float uTime;
uniform float uVelocity;
uniform float uStagger;

varying vec2 vUv;
varying vec3 vPosition;
varying vec3 vLayer1;
varying vec3 vLayer2;
varying vec3 vLayer3;
varying vec3 vNormal;
varying vec3 vEyeVector;

void main(){
    vec4 modelPosition=modelMatrix*vec4(position,1.);
    vec4 viewPosition=viewMatrix*modelPosition;
    vec4 projectedPosition=projectionMatrix*viewPosition;
    gl_Position=projectedPosition;
    
    vec3 pos=position;
    float displacement1=uVelocity*uTime;
    float displacement2=uVelocity*(uTime*1.5+uStagger*1.);
    float displacement3=uVelocity*(uTime*2.+uStagger*2.);
    vec3 xy=vec3(1.,1.,0.);
    vec3 xz=vec3(1.,0.,1.);
    vec3 yz=vec3(0.,1.,1.);
    vec3 layer1=rotate(pos,xy,displacement1);
    vec3 layer2=rotate(pos,xz,displacement2);
    vec3 layer3=rotate(pos,yz,displacement3);
    
    vUv=uv;
    vPosition=position;
    vLayer1=layer1;
    vLayer2=layer2;
    vLayer3=layer3;
    vNormal=normal;
    vEyeVector=getEyeVector(modelMatrix,position,cameraPosition);
}

Фрагмент

Мультисэмплируйте карту шума и примените формулу отражения Френеля, чтобы сформировать эффект света.

firePaletteФункция - предыдущий визит автораshadertoyКогда я увидел функцию, имитирующую цвет пламени, я подумал, что это хорошо, и воспользовался ею напрямую.

// https://www.shadertoy.com/view/4scSW4
float fresnel(float bias,float scale,float power,vec3 I,vec3 N)
{
    return bias+scale*pow(1.+dot(I,N),power);
}

// https://www.shadertoy.com/view/XlSSzK
vec3 firePalette(float i){
    float T=1400.+1300.*i;// Temperature range (in Kelvin).
    vec3 L=vec3(7.4,5.6,4.4);// Red, green, blue wavelengths (in hundreds of nanometers).
    L=pow(L,vec3(5.))*(exp(1.43876719683e5/(T*L))-1.);
    return 1.-exp(-5e8/L);// Exposure level. Set to "50." For "70," change the "5" to a "7," etc.
}

uniform float uTime;
uniform vec2 uMouse;
uniform vec2 uResolution;
uniform samplerCube uNoiseTexture;
uniform float uBrightness;

varying vec2 vUv;
varying vec3 vPosition;
varying vec3 vLayer1;
varying vec3 vLayer2;
varying vec3 vLayer3;
varying vec3 vNormal;
varying vec3 vEyeVector;

float layerSum(){
    float sum=0.;
    sum+=textureCube(uNoiseTexture,vLayer1).r;
    sum+=textureCube(uNoiseTexture,vLayer2).r;
    sum+=textureCube(uNoiseTexture,vLayer3).r;
    sum*=uBrightness;
    return sum;
}

void main(){
    float brightness=layerSum();
    brightness=4.*brightness+1.;
    float F=fresnel(0.,1.,2.,vEyeVector,vNormal);
    brightness+=F;
    brightness*=.5;
    vec4 color=vec4(firePalette(brightness),1.);
    gl_FragColor=color;
}

sun-base.gif

Тело солнца завершено, и затем реализовать кольцо его внешнего слоя

Шейдер внешнего кольца

вершина

То же, что и в шаблоне, опустить

Фрагмент

Создайте сияющий градиент и примените цвет огня

float invert(float n){
    return 1.-n;
}

vec3 invert(vec3 n){
    return 1.-n;
}

// https://www.shadertoy.com/view/XlSSzK
vec3 firePalette(float i){
    float T=1400.+1300.*i;// Temperature range (in Kelvin).
    vec3 L=vec3(7.4,5.6,4.4);// Red, green, blue wavelengths (in hundreds of nanometers).
    L=pow(L,vec3(5.))*(exp(1.43876719683e5/(T*L))-1.);
    return 1.-exp(-5e8/L);// Exposure level. Set to "50." For "70," change the "5" to a "7," etc.
}

uniform float uTime;
uniform vec2 uMouse;
uniform vec2 uResolution;

varying vec2 vUv;
varying vec3 vPosition;

void main(){
    float radial=invert(vPosition.z);
    radial=pow(radial,3.);
    float brightness=(1.+radial*.83)*radial*.4;
    vec3 ringColor=firePalette(brightness);
    vec4 color=vec4(ringColor,radial);
    gl_FragColor=color;
}

sun.gif

Long may the sunshine.

адрес проекта

Sun