предисловие
Всем привет, это волшебник CSS - alphardex.
В этой статье мы будем использовать three.js для имитации эффекта анимации солнца.
Давайте начнем!
Готов к работе
авторышаблон three.js: Нажмите вилку в правом нижнем углу, чтобы скопировать копию.
нарисовать солнце
закадровый рендеринг
Основная идея реализации солнца заключается в следующем:
- Создавать шум (в этой статье выбрано
simplex noise
как шум) - Рендерим шум как кубическую карту на сфере
- Мультисэмплинг текстуры сферы для имитации эффекта движения солнца.
- Создает градиентное излучение в виде кольца вокруг периферии солнца.
class Sun extends Base {
constructor(sel: string, debug: boolean) {
super(sel, debug);
this.clock = new THREE.Clock();
this.cameraPosition = new THREE.Vector3(0, 0, 2);
}
// 初始化
init() {
this.createScene();
this.createPerspectiveCamera();
this.createRenderer();
this.createSunNoiseMaterial();
this.createCubeRt();
this.createSunShapeMaterial();
this.createSun();
this.createSunRingMaterial();
this.createSunRing();
this.createLight();
this.trackMousePos();
this.createOrbitControls();
this.addListeners();
this.setLoop();
}
// 创建噪声材质
createSunNoiseMaterial() {
const sunNoiseMaterial = new THREE.ShaderMaterial({
vertexShader: sunNoiseVertexShader,
fragmentShader: sunNoiseFragmentShader,
side: THREE.DoubleSide,
uniforms: {
uTime: {
value: 0
},
uMouse: {
value: new THREE.Vector2(0, 0)
},
uResolution: {
value: new THREE.Vector2(window.innerWidth, window.innerHeight)
}
}
});
this.sunNoiseMaterial = sunNoiseMaterial;
}
// 创建立方体离屏渲染目标,将其作为太阳本体的噪声贴图
createCubeRt() {
const cubeRt = new THREE.WebGLCubeRenderTarget(256);
this.cubeRt = cubeRt;
const cubeCamera = new THREE.CubeCamera(0.1, 10, cubeRt);
this.cubeCamera = cubeCamera;
const cubeScene = new THREE.Scene();
const geometry = new THREE.SphereBufferGeometry(1, 100, 100);
const material = this.sunNoiseMaterial;
this.createMesh(
{
geometry,
material
},
cubeScene
);
this.cubeScene = cubeScene;
}
// 创建太阳本体材质
createSunShapeMaterial() {
const sunShapeMaterial = new THREE.ShaderMaterial({
vertexShader: sunShapeVertexShader,
fragmentShader: sunShapeFragmentShader,
side: THREE.DoubleSide,
uniforms: {
uTime: {
value: 0
},
uMouse: {
value: new THREE.Vector2(0, 0)
},
uResolution: {
value: new THREE.Vector2(window.innerWidth, window.innerHeight)
},
uNoiseTexture: {
value: null
},
uVelocity: {
value: 0.05
},
uBrightness: {
value: 0.33
},
uStagger: {
value: 16
}
}
});
this.sunShapeMaterial = sunShapeMaterial;
}
// 创建太阳
createSun() {
const geometry = new THREE.SphereBufferGeometry(1, 100, 100);
const material = this.sunShapeMaterial;
this.createMesh({
geometry,
material
});
}
// 创建太阳环材质
createSunRingMaterial() {
const sunRingMaterial = new THREE.ShaderMaterial({
vertexShader: sunRingVertexShader,
fragmentShader: sunRingFragmentShader,
side: THREE.BackSide,
uniforms: {
uTime: {
value: 0
},
uMouse: {
value: new THREE.Vector2(0, 0)
},
uResolution: {
value: new THREE.Vector2(window.innerWidth, window.innerHeight)
}
}
});
this.sunRingMaterial = sunRingMaterial;
}
// 创建太阳环
createSunRing() {
const geometry = new THREE.SphereBufferGeometry(1.2, 100, 100);
const material = this.sunRingMaterial;
this.createMesh({
geometry,
material
});
}
// 动画
update() {
const elapsedTime = this.clock.getElapsedTime();
const mousePos = this.mousePos;
if (this.sunNoiseMaterial && this.sunShapeMaterial) {
this.cubeCamera.update(this.renderer, this.cubeScene);
this.sunNoiseMaterial.uniforms.uTime.value = elapsedTime;
this.sunNoiseMaterial.uniforms.uMouse.value = mousePos;
this.sunShapeMaterial.uniforms.uTime.value = elapsedTime;
this.sunShapeMaterial.uniforms.uMouse.value = mousePos;
this.sunShapeMaterial.uniforms.uNoiseTexture.value = this.cubeRt.texture;
this.sunRingMaterial.uniforms.uTime.value = elapsedTime;
this.sunRingMaterial.uniforms.uMouse.value = mousePos;
}
}
}
Теперь, когда вы готовы к рендерингу вне экрана, вы можете перейти к теме этой статьи — шейдерам.
шейдер шума
вершина
То же, что и в шаблоне, опустить
Фрагмент
Используется шум в сочетании с фрактальным броуновским движением.fbm
реализовать шумовую анимацию
Суть фрактального броуновского движения заключается в увеличении частоты шума и уменьшении амплитуды шума за счет циклического движения.
vec4 mod289(vec4 x) {
return x - floor(x * (1.0 / 289.0)) * 289.0; }
float mod289(float x) {
return x - floor(x * (1.0 / 289.0)) * 289.0; }
vec4 permute(vec4 x) {
return mod289(((x*34.0)+1.0)*x);
}
float permute(float x) {
return mod289(((x*34.0)+1.0)*x);
}
vec4 taylorInvSqrt(vec4 r)
{
return 1.79284291400159 - 0.85373472095314 * r;
}
float taylorInvSqrt(float r)
{
return 1.79284291400159 - 0.85373472095314 * r;
}
vec4 grad4(float j, vec4 ip)
{
const vec4 ones = vec4(1.0, 1.0, 1.0, -1.0);
vec4 p,s;
p.xyz = floor( fract (vec3(j) * ip.xyz) * 7.0) * ip.z - 1.0;
p.w = 1.5 - dot(abs(p.xyz), ones.xyz);
s = vec4(lessThan(p, vec4(0.0)));
p.xyz = p.xyz + (s.xyz*2.0 - 1.0) * s.www;
return p;
}
// (sqrt(5) - 1)/4 = F4, used once below
#define F4 0.309016994374947451
float snoise(vec4 v)
{
const vec4 C = vec4( 0.138196601125011, // (5 - sqrt(5))/20 G4
0.276393202250021, // 2 * G4
0.414589803375032, // 3 * G4
-0.447213595499958); // -1 + 4 * G4
// First corner
vec4 i = floor(v + dot(v, vec4(F4)) );
vec4 x0 = v - i + dot(i, C.xxxx);
// Other corners
// Rank sorting originally contributed by Bill Licea-Kane, AMD (formerly ATI)
vec4 i0;
vec3 isX = step( x0.yzw, x0.xxx );
vec3 isYZ = step( x0.zww, x0.yyz );
// i0.x = dot( isX, vec3( 1.0 ) );
i0.x = isX.x + isX.y + isX.z;
i0.yzw = 1.0 - isX;
// i0.y += dot( isYZ.xy, vec2( 1.0 ) );
i0.y += isYZ.x + isYZ.y;
i0.zw += 1.0 - isYZ.xy;
i0.z += isYZ.z;
i0.w += 1.0 - isYZ.z;
// i0 now contains the unique values 0,1,2,3 in each channel
vec4 i3 = clamp( i0, 0.0, 1.0 );
vec4 i2 = clamp( i0-1.0, 0.0, 1.0 );
vec4 i1 = clamp( i0-2.0, 0.0, 1.0 );
// x0 = x0 - 0.0 + 0.0 * C.xxxx
// x1 = x0 - i1 + 1.0 * C.xxxx
// x2 = x0 - i2 + 2.0 * C.xxxx
// x3 = x0 - i3 + 3.0 * C.xxxx
// x4 = x0 - 1.0 + 4.0 * C.xxxx
vec4 x1 = x0 - i1 + C.xxxx;
vec4 x2 = x0 - i2 + C.yyyy;
vec4 x3 = x0 - i3 + C.zzzz;
vec4 x4 = x0 + C.wwww;
// Permutations
i = mod289(i);
float j0 = permute( permute( permute( permute(i.w) + i.z) + i.y) + i.x);
vec4 j1 = permute( permute( permute( permute (
i.w + vec4(i1.w, i2.w, i3.w, 1.0 ))
+ i.z + vec4(i1.z, i2.z, i3.z, 1.0 ))
+ i.y + vec4(i1.y, i2.y, i3.y, 1.0 ))
+ i.x + vec4(i1.x, i2.x, i3.x, 1.0 ));
// Gradients: 7x7x6 points over a cube, mapped onto a 4-cross polytope
// 7*7*6 = 294, which is close to the ring size 17*17 = 289.
vec4 ip = vec4(1.0/294.0, 1.0/49.0, 1.0/7.0, 0.0) ;
vec4 p0 = grad4(j0, ip);
vec4 p1 = grad4(j1.x, ip);
vec4 p2 = grad4(j1.y, ip);
vec4 p3 = grad4(j1.z, ip);
vec4 p4 = grad4(j1.w, ip);
// Normalise gradients
vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3)));
p0 *= norm.x;
p1 *= norm.y;
p2 *= norm.z;
p3 *= norm.w;
p4 *= taylorInvSqrt(dot(p4,p4));
// Mix contributions from the five corners
vec3 m0 = max(0.6 - vec3(dot(x0,x0), dot(x1,x1), dot(x2,x2)), 0.0);
vec2 m1 = max(0.6 - vec2(dot(x3,x3), dot(x4,x4) ), 0.0);
m0 = m0 * m0;
m1 = m1 * m1;
return 49.0 * ( dot(m0*m0, vec3( dot( p0, x0 ), dot( p1, x1 ), dot( p2, x2 )))
+ dot(m1*m1, vec2( dot( p3, x3 ), dot( p4, x4 ) ) ) ) ;
}
#define OCTAVES 6
uniform float uTime;
uniform vec2 uMouse;
uniform vec2 uResolution;
varying vec2 vUv;
varying vec3 vPosition;
float fbm4d(vec4 p){
float sum=0.;
float amp=1.;
float scale=1.;
for(int i=0;i<OCTAVES;i++){
sum+=snoise(p*scale)*amp;
p.w+=100.;
amp*=.9;
scale*=2.;
}
return sum;
}
void main(){
vec4 p=vec4(vPosition*4.,uTime*.025);
float noise=fbm4d(p);
vec4 p1=vec4(vPosition*2.,uTime*.25);
float spot=max(snoise(p1),0.);
vec4 color=vec4(noise);
color*=mix(1.,spot,.7);
gl_FragColor=color;
}
онтологический шейдер
вершина
Создано 3 слоя движения (с вращением по осям xy, xz и yz соответственно), чтобы обеспечить позиционную основу для мультисэмплирования фрагментов.
mat2 rotation2d(float angle) {
float s = sin(angle);
float c = cos(angle);
return mat2(
c, -s,
s, c
);
}
mat4 rotation3d(vec3 axis, float angle) {
axis = normalize(axis);
float s = sin(angle);
float c = cos(angle);
float oc = 1.0 - c;
return mat4(
oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0,
oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0,
oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0,
0.0, 0.0, 0.0, 1.0
);
}
vec2 rotate(vec2 v, float angle) {
return rotation2d(angle) * v;
}
vec3 rotate(vec3 v, vec3 axis, float angle) {
return (rotation3d(axis, angle) * vec4(v, 1.0)).xyz;
}
// https://tympanus.net/codrops/2019/10/29/real-time-multiside-refraction-in-three-steps/
vec3 getEyeVector(mat4 modelMat,vec3 pos,vec3 camPos){
vec4 worldPosition=modelMat*vec4(pos,1.);
vec3 eyeVector=normalize(worldPosition.xyz-camPos);
return eyeVector;
}
const float HALF_PI=1.570796327;
uniform float uTime;
uniform float uVelocity;
uniform float uStagger;
varying vec2 vUv;
varying vec3 vPosition;
varying vec3 vLayer1;
varying vec3 vLayer2;
varying vec3 vLayer3;
varying vec3 vNormal;
varying vec3 vEyeVector;
void main(){
vec4 modelPosition=modelMatrix*vec4(position,1.);
vec4 viewPosition=viewMatrix*modelPosition;
vec4 projectedPosition=projectionMatrix*viewPosition;
gl_Position=projectedPosition;
vec3 pos=position;
float displacement1=uVelocity*uTime;
float displacement2=uVelocity*(uTime*1.5+uStagger*1.);
float displacement3=uVelocity*(uTime*2.+uStagger*2.);
vec3 xy=vec3(1.,1.,0.);
vec3 xz=vec3(1.,0.,1.);
vec3 yz=vec3(0.,1.,1.);
vec3 layer1=rotate(pos,xy,displacement1);
vec3 layer2=rotate(pos,xz,displacement2);
vec3 layer3=rotate(pos,yz,displacement3);
vUv=uv;
vPosition=position;
vLayer1=layer1;
vLayer2=layer2;
vLayer3=layer3;
vNormal=normal;
vEyeVector=getEyeVector(modelMatrix,position,cameraPosition);
}
Фрагмент
Мультисэмплируйте карту шума и примените формулу отражения Френеля, чтобы сформировать эффект света.
firePalette
Функция - предыдущий визит автораshadertoyКогда я увидел функцию, имитирующую цвет пламени, я подумал, что это хорошо, и воспользовался ею напрямую.
// https://www.shadertoy.com/view/4scSW4
float fresnel(float bias,float scale,float power,vec3 I,vec3 N)
{
return bias+scale*pow(1.+dot(I,N),power);
}
// https://www.shadertoy.com/view/XlSSzK
vec3 firePalette(float i){
float T=1400.+1300.*i;// Temperature range (in Kelvin).
vec3 L=vec3(7.4,5.6,4.4);// Red, green, blue wavelengths (in hundreds of nanometers).
L=pow(L,vec3(5.))*(exp(1.43876719683e5/(T*L))-1.);
return 1.-exp(-5e8/L);// Exposure level. Set to "50." For "70," change the "5" to a "7," etc.
}
uniform float uTime;
uniform vec2 uMouse;
uniform vec2 uResolution;
uniform samplerCube uNoiseTexture;
uniform float uBrightness;
varying vec2 vUv;
varying vec3 vPosition;
varying vec3 vLayer1;
varying vec3 vLayer2;
varying vec3 vLayer3;
varying vec3 vNormal;
varying vec3 vEyeVector;
float layerSum(){
float sum=0.;
sum+=textureCube(uNoiseTexture,vLayer1).r;
sum+=textureCube(uNoiseTexture,vLayer2).r;
sum+=textureCube(uNoiseTexture,vLayer3).r;
sum*=uBrightness;
return sum;
}
void main(){
float brightness=layerSum();
brightness=4.*brightness+1.;
float F=fresnel(0.,1.,2.,vEyeVector,vNormal);
brightness+=F;
brightness*=.5;
vec4 color=vec4(firePalette(brightness),1.);
gl_FragColor=color;
}
Тело солнца завершено, и затем реализовать кольцо его внешнего слоя
Шейдер внешнего кольца
вершина
То же, что и в шаблоне, опустить
Фрагмент
Создайте сияющий градиент и примените цвет огня
float invert(float n){
return 1.-n;
}
vec3 invert(vec3 n){
return 1.-n;
}
// https://www.shadertoy.com/view/XlSSzK
vec3 firePalette(float i){
float T=1400.+1300.*i;// Temperature range (in Kelvin).
vec3 L=vec3(7.4,5.6,4.4);// Red, green, blue wavelengths (in hundreds of nanometers).
L=pow(L,vec3(5.))*(exp(1.43876719683e5/(T*L))-1.);
return 1.-exp(-5e8/L);// Exposure level. Set to "50." For "70," change the "5" to a "7," etc.
}
uniform float uTime;
uniform vec2 uMouse;
uniform vec2 uResolution;
varying vec2 vUv;
varying vec3 vPosition;
void main(){
float radial=invert(vPosition.z);
radial=pow(radial,3.);
float brightness=(1.+radial*.83)*radial*.4;
vec3 ringColor=firePalette(brightness);
vec4 color=vec4(ringColor,radial);
gl_FragColor=color;
}
Long may the sunshine.